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ABSTRACT
We study the following problem: given two public transit station
identifiers 𝐴 and 𝐵, each with a label and a geographic coordinate,
decide whether 𝐴 and 𝐵 describe the same station. For example,
for "St Pancras International" at (51.5306,−0.1253) and "London
St Pancras" at (51.5319,−0.1269), the answer would be "Yes". This
problem frequently arises in areas where public transit data is
used, for example in geographic information systems, schedule
merging, route planning, or map matching. We consider several
baseline methods based on geographic distance and simple string
similarity measures. We also experiment with more elaborate string
similarity measures and manually created normalization rules. Our
experiments show that these baseline methods produce good, but
not fully satisfactory results. We therefore develop an approach
based on a random forest classifier which is trained on matching
trigrams between two stations, their distance, and their position
on an interwoven grid. All approaches are evaluated on extensive
ground truth datasets we generated from OpenStreetMap (OSM)
data: (1) The union of Great Britain and Ireland and (2) the union
of Germany, Switzerland, and Austria. On all datasets, our learning-
based approach achieves an F1 score of over 99%, while even the
most elaborate baseline approach (based on TFIDF scores and the
geographic distance) achieves an F1 score of at most 94%, and a
naive approach of using a geographical distance threshold achieves
an F1 score of only 75%. Both our training and testing datasets are
publicly available1.

1 INTRODUCTION
A recurring problem with public transit data is to decide whether
two station identifiers, both consisting of a label and a geographic
position, describe the same real-world station. Figure 1 gives an
example of three (ficticious) station identifiers within a distance
of 100 meters. While it is obvious for humans that “Newton, High
Street” and “High Street” describe the same station, but “Newton,
High Street” and “Newton,Main Street” are different, it is nontrivial
to decide automatically. This has ramifications in various areas
where station disambiguation is an important preprocessing step:

GIS. In the context of geographic information systems, search
queries for “London St Pancras”might exclude a station labeled “St
Pancras International” if the two stations are not disambiguated.

ScheduleMerging.Whenmultiple schedule datasets aremerged,
for example to create a uniform regional dataset consisting of multi-
ple agencies, station identifiers must be properly disambiguated. In
Figure 2, a regional train schedule (blue) contains a station identifier
“London St Pancras”, but an international schedule dataset (red)
identifies the same station by a label “St Pancras International” at
a slightly different location.

1https://staty.cs.uni-freiburg.de/datasets
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Figure 1: Station similarity classification problems in the fic-
tional town of Newton. Each colored area marks a classifi-
cation problem between two stops. Bus stop “High Street”
should be classified as similar to “Newton, High Street”
(green). The latter should be classified as not similar to “New-
ton, Main Street” (red).

Route Planning. A route planner fed with schedule datasets
without proper disambiguation might e.g. display an unnecessary
footpath between “London St Pancras” and “St Pancras Interna-
tional” for routes changing trains at St Pancras. This might both
confuse travelers and compromise the cost metric. If the route plan-
ner does not compute footpaths, it might also happen that the route
cannot be found at all.

Map-Matching. When map-matching is done with stations as
sample points, a station point labeled “London St Pancras” and
positioned at the station entrance might not be correctly matched
to a station in the geo-spatial data labeled “St Pancras International
Station” and positioned on the tracks.

Figure 3 gives two real-world examples of the challenges. The
goal of this work is to find robust approaches to this problem. We
start with a formal problem definition in Section 1.2 and discuss

London St Pancras

Ebbsfleet International

Ashford International

Calais-Fréthun

Lille-Europe
Gare de Calais-Ville

Gare Calais-Fréthun

Gare de Lille-Europe

St Pancras
International

Ebbsfleet

Ashford

Folkestone West
Folkestone Central

Figure 2: Three (simplified) schedule datasets for national ,
international and regional trains. The station identifier
pairs encircled in gray describe the same real-world station,
but their labels and positions differ per dataset.
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Figure 3: Left: Station identifiers for London St Pancras as they appear in three different datasets: OpenStreetMap
( OSM, black), Deutsche Bahn schedule ( DB, green), Association of Train Operating Companies schedule ( ATOC, red),
EuroStar schedule ( ES, blue). Note the distance of over 200 meters from the DB station to the ES station. Also note
that the nearest station in the OSM dataset for both ES stations is King’s Cross station. Right: Identifiers for the bus stop
“Telegrafstraße” in Troisdorf, Germany. OSM identifiers are again given in black, identifiers from the local transit authority
schedule VRS in orange.

the characteristics of station positions and labels in Section 2. In
Section 3, we give an overview over several baseline similarity
measures between station identifiers. We then develop a learning-
based approach which trains a random forest classifier on pairs
of similar and non-similar stations. Section 4 then describes how
we obtained ground truth data from OpenStreetMap (OSM). All
approaches are evaluated in Section 5.

1.1 Contributions
We consider the following as our key contributions:
• We study the characteristics of station identifiers belonging to
the same station based on multiple international datasets.
• We evaluate several baseline classification techniques based
on geographic distance and/or various string similarity measures,
including a novel measure called the Best Token Subsequence Simi-
larity (BTS).
• We describe a learning-based approach that uses a random forest
classifier, trained (among other features) on the difference of trigram
occurrences in both identifiers and their positions on an interwoven
geographic grid.
• Weevaluate all techniques on datasets coveringGermany, Switzer-
land, Austria, Great Britain and Ireland. On our largest dataset, our
learning-based approach achieves an F1 score of over 99%, while
the baseline approaches achieve an F1 score of at most 94%.

1.2 Problem Definition
A station identifier 𝑠 is a triple (𝑛, 𝜙, _), where 𝑛 is the station name
(for example, “London St. Pancras”) and 𝜙 and _ are the latitude and
longitude of its position, respectively. Our goal is to find a function
𝑐 that maps pairs of stations to {0, 1} such that 𝑐 (𝑠𝑎, 𝑠𝑏 ) = 1 when
𝑠𝑎 and 𝑠𝑏 belong to the same real-world station, and 𝑐 (𝑠𝑎, 𝑠𝑏 ) = 0
otherwise. We will refer to 𝑐 as a classifier.

We will design and evaluate functions based on explicitly con-
structed similarity measures, as well as parametrized functions,
where we learn the parameters from training data.

We obtain our ground truth from stations in public_transport=
stop_area relations in OSM. In a nutshell, according to the criteria
for this relation2, two OSM nodes belong to the same such relation
if they are both part of a station that is commonly presented as
a single unit to passengers. For example, if a large train station
consists of multiple tracks, the OSM nodes describing the tracks
are considered pairwise similar. If a bus stop serves two directions,
the platforms of the two directions are considered similar.

1.3 Related Work
Our work is closely related to previous work on string label simi-
larity and similarity measures for geographic locations, as they are
for example used for Point of Interest (POI) matching.

String label similarity classification is a recurring problem in
various fields of research. For example, in [5], similarity measures
between short database records (e.g. city names or first and/or last
names) were investigated, among them the Jaro and Jaro-Winkler
similarity and token-based measures like TFIDF scores or the Jac-
card index. Similarity measures for name-matching of generic en-
tities were for example evaluated in [7]. Another area of research
where label similarity is of interest is author disambiguation. For
example, in [13], author names of scientific publications were dis-
ambiguated by training a Naive Bayes classifier or a support-vector
machine. For recent surveys on author name disambiguation tech-
niques, see for example [9] and [14].

In the area of Geographic Information Retrieval, similarity mea-
sures for geographic locations try to rank geographic locations
(often combined with some labels) with respect to a textual user
query (for example “Bar in Vienna”). In [16], such a measure based
on a geographic ontology which represents spatial relationships

2https://wiki.openstreetmap.org/wiki/Tag:public_transport%3Dstop_area
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between locations was described. In [1], a similar measure was
combined with BM25 scores for measuring textual similarity.

The closely related field of POI matching tries to find POI pairs
which describe the same real-world location, often to merge geo-
spatial datasets [22]. This is typically done via a combination of
spatial and textual similarity measures. For example, in [23] a binary
spatial similarity measure based on a threshold for the Euclidean
distance was combined with a two-phased approach which first
considered the edit distance, and if no match was found, the TFIDF
similarity. In [20], the goal was to match spatio-textual data (con-
sisting of a geographic location and a textual description) as it
appears for example in social media to real-word POIs, and receive
the top-𝑘 best matches. For the spatial similarity, a normalized Eu-
clidean distance was used. For the textual similarity, the weighted
Jaccard index was chosen (as a weight, the inverse document fre-
quency (IDF) was proposed). A recent work [8] assumes that the
geographic distances between matching POIs follow an exponential
distribution and models the spatial similarity measure accordingly.
Additionally, a label similarity (based on the edit distance), an ad-
dress similarity (based on TFIDF scores) and a category similarity
(based on hierarchical category data that was part of the input)
were considered. For a recent overview over existing work on POI
matching, also see [8].

To the best of our knowledge, the applicability of such methods
to station identifiers has not been investigated so far (it is also
not obvious that they should work, because of the special nature
of station identifiers, see Section 2). We evaluate the similarity
measures typically found in this area in Section 5.

In [2], a station label similaritymeasure called token subsequence
edit distance was described to improve map-matching results for
schedule data, but without offering a thorough evaluation. We
evaluate an improved variant of this measure (called BTS).

Our method of encoding geographic positions on an interwo-
ven grid is reminiscent of recent work on positional encoding for
machine learning (see e.g. [12]). For example, in [24], sequence
token positions were mapped to sinusoidal functions of different
frequencies to allow learning of both absolute and relative position
characteristics.

As our ground truth dataset is generated from OSM data, our
work is also related to previous work that applied machine learning
approaches to OSM data. For example, in [10], missing road data
was extrapolated by training a classifier which decided whether
a road segment should be present between two candidate nodes.
The authors of [17] trained an SVM on OSM data to recommend
categories for newly inserted OSM nodes. In [11], a random forest
classifier trained on 𝑘-grams of amenity names was used to infer
missing tags (e.g. the cuisine tag for restaurants). In [3], we trained
a random forest classifier on OSM station data to automatically
correct public transit station tagging, but without giving a thorough
evaluation of the underlying classification results.

2 STATION IDENTIFIER CHARACTERISTICS
As mentioned above, for two different station identifiers belonging
to the same real-world station, geographic coordinates may differ
significantly and labels may differ greatly. In this section, we de-
scribe characteristics of both the labels and coordinates of station
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Figure 4: Distribution of geographic distances between
(unique) similar station identifier pairs in our OSM-based
ground truth dataset for Germany, Austria and Switzerland.

identifiers as well as the rationale behind different labeling and
positioning variants.

2.1 Characteristics of Geographic Positions
There are mainly three reasons why similar station identifiers have
inconsistent coordinates: (1) different principles guiding the place-
ment, (2) imprecise coordinates, and (3) human error. We again
consider Figure 3, left. The OSM station identifiers for “St Pancras”
are placed either directly on the tracks, at station entrances, or
somewhere around the station centroid (which is not well-defined).
All three approaches are reasonable. Even worse, the station identi-
fiers for “St Pancras” from the EuroStar dataset are located in the
middle of “King’s Cross” station (it is hard to tell whether this is a
human error or a precision problem). In Figure 3, right, it is equally
hard to tell whether the different locations for “Telegrafstraße” are
caused by precision problems or human error.

We examined the distribution of distances between stations
marked as similar in our OSM ground truth data for Germany,
Austria and Switzerland. The results can be seen in Figure 4. While
most of the similar station pairs (69%) were within a distance of 50
meters, 19% were between 50 and 100 meters apart, and 12% were
over 100 meters apart. It appears that the distances between similar
pairs roughly follow an exponential distribution.

2.2 Characteristics of Station Labels
Figure 5 gives an example of different label variants of the main
station in Freiburg, Germany (all obtained from OSM data). In
general, the following characteristics of station labels can be found
in the western world: (1) Typos are rare. Station labels are usually
very short and often used in information systems on the train
or the stations, where typos would be noticed immediately. (2)
There are typical (but often regionally specific) abbreviations, like
“Str.” or “St.” for “street” in German or English, respectively, or
the ubiquitous “Hbf”, short for “Hauptbahnhof” (main station), in
Germany. (3) Location specifiers like town, district or area names
(e.g. the Breisgau area in Figure 5) may be (partially) omitted. For
example, in a schedule published by a city’s local transit authority,
it is not necessary to prefix every station label with the name of the
city: a label “Central Station” is usually a unique identifier inside
municipal boundaries. (4) Exact station labels may be (partially)
omitted. For example, in long-distance train schedules, where trains
only stop at a single station in town, a dropped suffix “Central
Station”will not lead to confusion - it is enough to just give the name



Hauptbahnhof

Freiburg

Freiburg Hauptbahnhof

Freiburg Hbf

Freiburg im Breisgau

Hauptbahnhof Freiburg

Freiburg im Breisgau Hauptbahnhof

Freiburg (Breisgau) Hauptbahnhof

Hauptbahnhof , Freiburg im Breisgau

Freiburg (Breisgau) , Hauptbahnhof

Freiburg(Brsg) Hauptbahnhof

Freiburg(Brsg) Hbf

Figure 5: Incomplete list of different label variants in OSM
for themain station (German: “Hauptbahnhof”) in Freiburg.
The location specifier “im Breisgau” is sometimes used to
distinguish the town fromFreiburg imÜechtland in Switzer-
land. Similar tokens are highlighted by the same color.

of the city. (5) Token ordering may vary greatly. (6) Station labels
may exist in an official, full-length form (“St Pancras International
Station”) and in a colloquially used shorter form (“St Pancras”).
(7) Token separators vary greatly, and may - interchangeably -
consist of whitespace, commas, semicolons, hyphens, brackets, or
are indicated by camel casing (“StPancras” instead of “St Pancras”,
“Freiburg(Breisgau)” instead of “Freiburg (Breisgau)”). (8) labels
may be over-specified and describe locations inside the station.
For example, schedule data for a single railway line may explicitly
mention the track number it usually arrives at.

3 CLASSIFICATION TECHNIQUES
In this section, we will describe several similarity classification
techniques based on geographic coordinates, the station labels or
combinations thereof. We will first discuss two naive baseline ap-
proaches based on station label or station position equivalency in
Section 3.1. We will then extend the latter to a similarity measure
using a distance threshold in Section 3.2. After that, Section 3.3
describes several methods to measure station label similarity, most
of which are based on established string similarity measures. In
Section 3.4, we combine these similarity measures. In Section 3.5,
we develop a machine learning based approach to our problem.

3.1 Naive Techniques
A naive solution to our classification problem would consider two
station identifiers as equivalent if their positions and/or labels are
equivalent. It is already clear from Section 2 that such an approach
will perform very badly and lead to many false negatives. Never-
theless, we describe both techniques, also as two simple examples
for the formalism we use to describe all our techniques.

3.1.1 Position Equivalency. To decide whether two station iden-
tifiers 𝑠𝑎 and 𝑠𝑏 are similar, we simply use a function 𝑐PEQ (𝑠𝑎, 𝑠𝑏 )
that checks whether their positions are equivalent (within some 𝜖
to account for floating point inaccuracies):

𝑐PEQ (𝑠𝑎, 𝑠𝑏 ) =
{
1, if 𝑑 (𝜙𝑎, _𝑎, 𝜙𝑏 , _𝑏 ) < 𝜖
0, otherwise,

(1)

where 𝑑 is the geographic distance between (𝜙𝑎, _𝑎) and (𝜙𝑏 , _𝑏 ).

3.1.2 Label Equivalency. Likewise, we define a function 𝑐LEQ that
decides that 𝑠𝑎 and 𝑠𝑏 are similar if their labels are equivalent:

𝑐LEQ (𝑠𝑎, 𝑠𝑏 ) =
{
1, if 𝑛𝑎 = 𝑛𝑏

0, otherwise.
(2)

This approach is not robust against small name deviations (for
example, “London St Pancras” vs. “London St. Pancras”) stations
in different cities sharing the same name.

3.2 Station Position Similarity
We may improve 𝑐PEQ from above by replacing 𝜖 with a distance
threshold 𝑑 under which two station identifiers are considered sim-
ilar. However, such a binary function would be hard to combine
with other approaches (for example, using soft voting). Instead, we
would like to have a continuous score of whether two station iden-
tifiers are similar. Based on the observation that distances between
similar stations seem to follow an exponential distribution (Fig. 4),
we model this as follows:

simP (𝑠𝑎, 𝑠𝑏 ) = exp
(
− ln(2) · 𝑑 (𝜙𝑎, _𝑎, 𝜙𝑏 , _𝑏 )

𝑑

)
, (3)

𝑑 is again the geographic distance. The rate parameter is set to
ln(2) to ensure a median of 1 (simP < 0.5 when 𝑑 is bigger than 𝑑).

3.3 Station Label Similarity
To make the label comparison more robust, this section discusses
several techniques to measure station label similarity.

3.3.1 Name Normalization. Text normalization describes the
process of canonizing input texts before they are further processed.
In the context of station labels, some of the differences in spelling
and representation described in Section 2 may be removed by man-
ually created normalization rules. As station labels are written in
uppercase in some datasets, it may also be useful to transform all
characters of a station label into upper- or lowercase letters. Fig-
ure 6 gives examples of station label normalization rules for the
German language (all operating on lowercase labels).

Another frequently used technique in text normalization is the
concept of stop words. Here, a list of words that are irrelevant for
similarity is compiled either by hand or automatically. For exam-
ple, if the dataset only consists of stations from the public transit
network of Berlin, it may be reasonable to assume that “Berlin” has
no relevance for the similarity of station labels (as many stations
will be prefixed with it).

3.3.2 String Similarity Measures. To our knowledge, the appli-
cability of classic string similarity measures to station labels has
not been investigated so far. In our experiments, we will evaluate
several well-known measures, briefly summarized in this section.

The classic edit distance 𝑒𝑑 (𝑠𝑎, 𝑠𝑏 ) counts the number of edits
(add, delete or substitution) necessary to transform 𝑠𝑎 into 𝑠𝑏 [19].
It can be transformed into a similarity measure by taking the ratio
between the distance and length of the larger input string.

To make the similarity measure more robust against missing
parts, many measures have been proposed [7, 21]. One natural
approach is to use the prefix edit distance (PED); it is defined as
𝑝𝑒𝑑 (𝑎, 𝑏) = min𝑏′ 𝑒𝑑 (𝑎, 𝑏 ′), where 𝑏 ′ is a prefix of a [4]. As the PED



, −→ ␣

- −→ ␣

" −→ ␣

& −→ und

+ −→ und

ä −→ ae

ß −→ ss

str. −→ strasse

([a-z])strasse($|␣) −→ \1␣strasse\2

st −→ strasse

(^|␣)hbf\.($|␣) −→ \1hauptbahnhof\2

(^|␣)hbf($|␣) −→ \1hauptbahnhof\2

\s+ −→ ␣

^\s −→
\s$ −→

Figure 6: Excerpt of the manually compiled station label
normalization rules used in our evaluation to measure the
extent to which our classification approaches are robust
against variants in spelling. Given as regular expressions
(\<n>matches the 𝑛-th matched group on the left hand side).
All labels are transformed to lowercase first.

is not symmetric, we compute the PED similarity in both directions
and simply take the best result.

A robust similarity measure targeted especially at shorter strings
is the Jaro similarity [15]. The closely related Jaro-Winkler similarity
favors strings which match from the beginning [25].

The Jaccard index is a similarity measure based on the string
tokens 𝐴 and 𝐵 of strings 𝑠𝑎 and 𝑠𝑏 , respectively. As the Jaccard
index is not very robust against minor differences in spelling or
missing tokens, we additionally evaluate a similarity score that
aims to combine the advantage of the Jaccard index (ordering is
irrelevant) and the edit distance similarity. We call this measure the
best token subsequence similarity (BTS) and define it as

simBTS (𝑠𝑎, 𝑠𝑏 ) = max
(
max

𝑎∈𝑃 (𝐴)
sim∗

ED (𝑎, 𝑛𝑏 ), max
𝑏∈𝑃 (𝐵)

sim∗
ED (𝑏, 𝑛𝑎)

)
,

(4)

where sim∗
ED is the edit distance similarity directly on strings. 𝑃 (𝑆)

is the set of all possible permutations of all subsets of 𝑆 with size
1 ≤ 𝑛 ≤ |𝑆 |, concatenated with a space. For example,

𝑃 ({“Freiburg”, “Hauptbahnhof”}) ={“Freiburg”, “Hauptbahnhof”,
“Freiburg Hauptbahnhof”,

“Hauptbahnhof Freiburg”}.

Because |𝑃 (𝑆) | grows super-exponentially, the calculation cost for
labels withmany tokens is an obvious drawback. In our experiments,
we fall back to the Jaccard index if |𝑃 (𝐴) | > 6 or |𝑃 (𝐵) | > 6.

We also evaluate TFIDF scores, a standard method in Information
Retrieval [18]. TFIDF scores are based on the term frequency (the
number of times a token appears in a document), and the document
frequency (the number of documents a token occurs in). They are
calculated per token (in our case, documents are the labels itself).
As a similarity measure between two sets of string tokens 𝐴 and 𝐵,
we then simply take the cosine similarity of their relevance vectors.

3.4 Combined Techniques
Classifiers based on label similarity tend to produce false posi-
tives, as stations in different cities often share a common name.
Conversely, classifiers based on geographic positions may fail if
stations have a distance greater than the threshold, or produce false

positives if two non-similar stations are positioned very close to
each other. A simple idea is to combine them.

However, the label similarity measures described above all give
values between 0 and 1, and require some threshold 𝑡 for classifica-
tion. To make it easier to combine these measures, we would again
like to have a continuous value that is 1 if the similarity measure
is 1, 0.5 if the similarity measure is exactly 𝑡 and 0 if the similar-
ity measure is 0. For a given similarity measure and two station
identifiers 𝑠𝑎 and 𝑠𝑏 , we define sim′ like this:

sim′(𝑠𝑎, 𝑠𝑏 ) =
{
1
2 + sim(𝑠𝑎,𝑠𝑏 )−𝑡

2(1−𝑡 ) if sim(𝑠𝑎, 𝑠𝑏 ) > 𝑡
sim(𝑠𝑎,𝑠𝑏 )

2𝑡 otherwise.
(5)

For example, if simED (𝑠𝑎, 𝑠𝑏 ) = 0.9 and 𝑡 = 0.8, sim′
ED (𝑠𝑎, 𝑠𝑏 ) = 0.75.

Using this, we define a function 𝑐sim such that 𝑐sim (𝑠𝑎, 𝑠𝑏 ) = 1 if
sim′(𝑠𝑎, 𝑠𝑏 ) > 0.5, or else 𝑐sim (𝑠𝑎, 𝑠𝑏 ) = 0.

We can then combine different thresholded similarity scores with
a soft or hard voting approach. In soft voting, the similarity scores
given by the respective classifiers are averaged. In hard voting, the
final similarity score is calculated by a majority vote.

3.5 Machine Learning
TFIDF scores already “learn” label tokens of low significance. For
example, in a dataset of London, the token “London” would have
low significance because of its high document frequency. However,
in a different area of Great Britain, “London Street”may be a unique
station label. None of our classifiers so far considered this.

Additionally, there may be abbreviations which are either region-
ally specific or difficult to capture in classic similarity measures. In
Section 3.3.1, we described label normalization by manually created
rules. The goal of this section is to build a classifier which can learn
abbreviations and the regional specificity of tokens automatically.
We base our classifier on an off-the-shelf random forest classifier
[6], chosen for its ease of use and robustness.

3.5.1 Feature Engineering. The classifier is trained on features of
matching and non-matching station identifier pairs. Table 1 gives an
example of two feature vectors for data based on the OpenStreetMap
data of the Freiburg region. We use the following features:

(1) The meter distance between the two station identifiers. We
want to give the model the possibility to learn to ignore deviations
in station labels if the identifiers are close, and that high distances
make it very unlikely that two stations are similar.

(2) The grid coordinate of the centroid of both station positions
on an interwoven grid. We assume that the centroid is representa-
tive for the general area of the stations (Section 4 will make it clear
that the distance between the two stations is always small enough
for that to be the case). For 𝑛 interwoven grids 𝐺0,𝐺𝑖 , ...,𝐺𝑛 with
grid cells of width𝑤 and a height ℎ, we offset the 𝑥 origin of each
𝐺𝑖 by 𝑤/𝑛, and the 𝑦 origin by ℎ/𝑛. Figure 7 gives an example of
such an interwoven grid with 𝑛 = 3. The motivation behind this
is to soften the effect of hard grid boundaries, and to also give the
model the ability to learn about rectangular areas of varying sizes
(for example, cell 𝑎 in Figure 7 can be uniquely identified by a triplet
of coordinates on all three grids).

(3) The difference in the number of occurrences of the training
dataset’s top 𝑘 trigrams between the right-hand side station label
and the left-hand side station label. We take the trigrams from the



Table 1: Example feature vectors for three station pairs in a testing dataset for the Freiburg area: (1) “Freiburg im Breisgau
Hauptbahnhof”@ (47.9966, 7.8404) vs. “Hauptbahnhof”@ (47.9965, 7.8407). (2) “Okenstraße”@ (48.0105, 7.8545) vs. “Nordstraße”
@ (48.0111, 7.8541). (3) “ZOB”@ (47.9959, 7.8405) vs. “Zentraler Omnibusbahnhof, Freiburg im Breisgau”@ (47.9960, 7.8407). The
distance in meters is given by 𝑑𝑚 and 𝑑3𝑔 is the number of trigrams that only occur in one of the two labels. Their relationship
in terms of the top-15 trigrams is given by the absolute difference in occurrences between the two labels. (𝑥0, 𝑦0) and (𝑥1, 𝑦1)
are the coordinates of the station pair centroid on two interwoven grids 𝐺0 and 𝐺1.

# 𝑑𝑚 𝑑3𝑔 𝑥0 𝑦0 𝑥1 𝑦1 rei tra raß aße urg bur ibu ␣Fr Fre eib rg␣ eis Bre sga isg “similar”
1 24 m 20 133 196 133 195 -2 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 yes

2 72 m 10 133 196 133 195 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 no

3 12 m 47 133 196 133 195 2 1 0 0 1 1 2 1 1 1 1 1 1 1 1 yes

133, 196 134, 196

133, 197 134, 197

133, 196 134, 196

133, 197 134, 197

133, 196 134, 196

133, 197 134, 197

a

b

c

G0

G1

G2

Figure 7: Three interwoven grids 𝐺0, 𝐺1 and 𝐺2 used to
assign station identifiers to specific areas. Rectangle 𝑎 is
uniquely identified by grid coordinates 𝑔0 = (133, 197), 𝑔1 =

(133, 196), 𝑔2 = (132, 196)), rectangle 𝑏 is uniquely identified
by grid coordinates 𝑔0 = (134, 196), 𝑔1 = (134, 196). There is no
selection of grid coordinates to identify 𝑐.

original station labels, padded with a single space on both sides.
For example, the trigrams for “London” are ␣Lo, Lon, ond, ndo,
don and on␣. The padding makes sure that single character tokens
are always represented by a distinct trigram. Table 3.5.1 gives an
example how the differences are then calculated. For example, if
rei occurs 2 times in the left-hand side station label, and 0 times
in the right station label, the difference is -2. If tra occurs 1 time
on the left-hand side label, and 1 time on the right-hand side label,
the difference is 0. These features act as a simple language model.

(4) The number of non-matching trigrams (every trigram, not
just the top 𝑘) between the station labels. If𝐴3 is the set of trigrams
in station label 𝑛𝑎 , and 𝐵3 the set of trigrams in station label 𝑛𝑏 , this
number is given by |𝐴3∪𝐵3 |− |𝐴3∩𝐵3 |. The primary motivation for
this feature is to capture the difference between station labels which
do not contain any of the top𝑘 trigrams.We use an absolute number
here and not, for example, the Jaccard similarity because we want
to enable the model to learn that a high number of missing trigrams
is acceptable if the difference for a trigram of low significance
accounts for it.

Figure 8: Typical bus/tram station in OpenStreetMap. Mul-
tiple stop nodes, each with possibly multiple labels (name,
uic_name, ref_name, gtfs_name, ...), are (manually) grouped
by a public_transport=stop_area relation.

4 EVALUATION SETUP
As we know of no comprehensive station dataset that contains both
typical spelling variants of station labels and also integrates dif-
ferent placement philosophies, we build our ground truth datasets
from OpenStreetMap (OSM) data. Figure 8 gives an example of a
typical bus/tram station as it appears in OSM. In the context of this
work, we only consider station objects tagged as nodes. Polygonal
stations (buildings, platforms) are not used, although they can eas-
ily be included in our approach. Stations in OSM often come with
multiple label attributes. For example, name=* gives a generic label
and reg_name=* sometimes contains a regionally used label. Ta-
ble 2 lists the station label attributes we use. The station nodes may
be grouped by a relation public_transport=stop_area, which
again may come with one or multiple label attributes3.

From this data, we build our ground-truth data like this: each
station label yields a station identifier with the position of the sta-
tion node. If the enclosing public_transport=stop_area relation
contains labels not present in a station node’s labels, we add them to
the node. We then count a pair {𝑠𝑎, 𝑠𝑏 } of station identifiers, where
both 𝑠𝑎 and 𝑠𝑏 are inside the same stop_area relation, as “similar”.
A pair {𝑠𝑎, 𝑠𝑏 } of station identifiers, where 𝑠𝑎 is inside a stop_area
relation 𝐴, and 𝑠𝑏 is in another stop_area relation 𝐵, is marked as
“not similar”. Station nodes not contained in a stop_area relation
(“orphan” nodes) are never marked as “not similar” to anything (but
station identifiers generated from their labels are pairwise marked

3https://wiki.openstreetmap.org/wiki/Tag:public_transport

https://wiki.openstreetmap.org/wiki/Tag:public_transport


Table 2: Name attributes for station nodes inOpenStreetMap
(OSM) used in our ground truth dataset.

attribute description
name Generic label used by default.

ref_name Sometimes gives a fully-qualified label.

uic_name UIC label, often equivalent to ref_name.

official_name Often equivalent to ref_name.

alt_name An alternative label.

loc_name Local station label (without location specifier).

reg_name Regional label (without location specifier).

short_name Short label.

gtfs_name
Undocumented, sometimes states the label used
in local schedule data.

as “similar”), as station objects are sometimes forgotten to be in-
cluded in stop_areas. Note that ignoring these orphan nodes does
not select an “easy” subset of the data. Stops without a stop_area
relation are usually very simple cases in rural areas (two stops on
opposite sides of the road, sharing the same single label).

We additionally apply two heuristics to keep our ground truth
clean: (1) if two station identifiers are not in the same stop_area,
but have exact matching names and are within 250 meters, we ig-
nore this pair. If two station identifiers are in different stop_area re-
lations, but the relations themselves are grouped by a super-relation
public_transport=stop_area_group, we also ignore this pair.

To avoid an unnecessarily large number of “not similar” pairs,
we set a search radius threshold. Above this threshold, we implicitly
assume that a pair can always by trivially considered as “not similar”.
In this work, we used a threshold of 1,000 meters. For both our
ground truth datasets, the original input data did not contain similar
station identifier pairs with a distance over 1,000 meters (except for
a few mapping mistakes), so no interesting cases were lost.

4.1 Spicing
Two station identifiers labeled “London St Pancras” and “Berlin
Hauptbahnhof” are obviously not similar, even if they are posi-
tioned only a few meters away. However, such mapping mistakes
would quickly be fixed by the OSM community and thus not appear
in our ground truth.

For our ground truth to better match real-world input data, we
randomly add such station pairs. We refer to this process as spic-
ing. Namely, for each original station identifier 𝑠𝑎 , we select with
probability 𝑝 a random set of 5 station identifiers 𝑠1

𝑏
, ..., 𝑠5

𝑏
outside

of the search radius. Each 𝑠𝑖
𝑏
is given a random coordinate within

100 meters of 𝑠𝑎 and {𝑠𝑎, 𝑠𝑖𝑏 } added as a “not similar” pair.
To simulate coordinate imprecision which is often present in

real-word datasets (as discussed in Section 2.1), we select with
probability 𝑝 a similar station pair and add gaussian noise (with a
standard deviation of 100 meters) to the coordinates of one station.

The effect of this spicing on the general performance of our
classifiers will be evaluated in Section 5.3.

Table 3: Dataset dimensions for Great Britain and Island
(BI) and Germany, Austria and Switzerland (DACH). 𝑁 is the
number of stations,𝐺 the number of groups, 𝑁 ′ the number
of stations without a group (orphan stations), |𝑠 | the number
of unique station identifiers, 𝑔 the average group size, 𝑑+ the
average meter distance between positive ground truth pairs,
𝐾− the number of “not similar” pairs and 𝐾+ the number of
“similar” pairs (all without spicing).

𝑁 𝐺 𝑁 ′ |𝑠 | 𝑔 𝑑+ 𝐾− 𝐾+ K

BI 270k 15k 234k 261k 3.7 56.7 1.7M 0.4M 2.1M

DACH 679k 102k 350k 875k 5 46.1 11.1M 2.6M 13.6M

5 EXPERIMENTAL RESULTS
We evaluated two datasets: the OSM data for the British Isles (Great
Britain and Ireland, BI) and the OSM data for Germany, Austria
and Switzerland (DACH). The latter yielded over 13 million station
identifier pairs. Their exact dimensions are given in Table 3.

Our interest was twofold: first, we wanted to find out whether
simple classification methods based on similarity measures have
a natural cutoff below which two stations can be considered not
similar, and above which they can be considered similar. This was
motivated by the fact that in real-world applications, a heuristic
cutoff value for some similarity measure is usually employed to
determine station similarity. Second, we wanted to compare the
best possible performance of each simple classification method
against our machine-learning based method.

To this end, we determined the optimal threshold values for each
similarity measure classifier 𝑐sim (when used in a standalone fash-
ion) described in Section 3: geographical distance (P), edit distance
(ED), prefix edit distance (PED), Jaro similarity (J), Jaro-Winkler sim-
ilarity (JW), Jaccard index (JAC), best-token subsequence similarity
(BTS), and TFIDF similarity (TFIDF). Afterwards, we evaluated com-
binations of those classifiers (P + ED, P + BTS, and P + TFIDF). In
Section 5.2, we discuss the performance of our random forest clas-
sifier (RF) in more detail. We measure the effect of the number of
used top-𝑘 trigrams and discuss the effects of a more fine-grained
interwoven geographic grid.

All classifiers were evaluated in terms of the number of true
positives TP, the number of true negatives TN, the number of false
positives FP and the number of false negatives FN. We evaluated
precision, recall and F1 scores. Precision scores were calculated as
TP

TP+FP , recall scores as
TP

TP+FN . The F1 score is the harmonic mean
between precision and recall.

For the evaluation, the ground truth dataset was spiced (see
Section 4.1) with probability 𝑝 = 0.5. We then divided the ground
truth data into a training set (a random selection of 20% of the
ground truth data) and a test set (the remaining 80%). There are
several reasons why we opted for this unusual ratio: (1) Only our
TFIDF and RF classifiers required an actual training step, and we
wanted to evaluate all classifiers against the same test dataset. A
bigger training dataset (70 - 80% of the ground truth data) would
have required us to limit our evaluation of the baseline approaches
to only a small fraction of our datasets. (2) Because of the high
quality of the OSM data, our ground truth data was extensive. There
was no need to restrict the evaluation to a small sample size to gain
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Figure 9: Effect of the threshold value (in meters) on preci-
sion, recall and F1 score for our geographic distance classi-
fier (P) on the DACH dataset.
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Figure 10: Effect of the threshold value on precision, re-
call and F1 score for our edit distance classifier (ED) on the
DACH dataset.

more training data. (3) We were interested in the performance of
the RF classifier when trained on only a small sample of the ground
truth dataset. (4) Faster training.

For the RF classifier, we also experimented with bigger training
datasets (80% of the ground truth), but found the performance gain
to be minimal (note that when trained on 20% of the ground truth,
the F1 score of the RF classifier is already above 99%). Classifiers
that didn’t require training were evaluated against the test dataset.
Classifiers that required training (TFIDF and RF) were trained on
the training dataset, and evaluated against the test dataset.

All evaluation runs were repeated 5 times (each time with a
randomly divided test/training dataset that was the same for all
classifiers) and final scores averaged. An overview of our results is
given in Table 4. The evaluation setup can be found online4.

A major takeaway of our experiments is that for a typical station
identifier dataset such as ours, there is a large percentage (between
90 and 95%) of cases which seem to be very easy to classify correctly
using a fixed cutoff value. The remaining 5–10%, however, are hard
to crack with conventional similarity measures or combinations
thereof, even when we search for the optimal cutoff values before-
hand. Interestingly, the optimal cutoff values for the geographic
and the edit distance were the same for both the DACH and BI
dataset (when used as standalone classifiers), suggesting that these
values might be language and area independent. This was also the
case when geographic and edit distance were combined.

For the DACH dataset, we additionally evaluated the effect of
manual station label normalization for all classifiers in Section 5.3.

5.1 Similarity Measure Classifier Results
For our classifiers based on geographic distance (P), edit distance
similarity (ED), prefix edit distance similarity (PED), Jaro similarity
(J), Jaro-Winkler similarity (JW), the Jaccard index (JAC), the best

4https://github.com/ad-freiburg/statsimi-eval

Table 4: Evaluation results for best parameters (optimized
for best F1 score), on unnormalized, spiced input. The
value(s) of the similarity measure thresholds is given by 𝑡 .

method t prec. rec. F1

BI

P 100 m 0.66 0.93 0.77
ED 0.85 0.99 0.86 0.92
PED 0.85 0.93 0.89 0.91
J 0.9 0.98 0.86 0.92
JW 0.95 0.99 0.84 0.91
JAC 0.75 0.99 0.84 0.91
BTS 0.85 0.91 0.9 0.91
TFIDF 0.99 0.99 0.84 0.91

P+ED 40 m + 0.6 0.96 0.9 0.93
P+BTS 10 m + 0.5 0.93 0.9 0.91
P+TFIDF 150 m + 0.99 0.96 0.92 0.94

RF — > 0.99 0.99 > 0.99

D
A
CH

P 125 m 0.4 0.96 0.56
ED 0.85 0.99 0.67 0.8
PED 0.9 0.93 0.73 0.82
J 0.85 0.93 0.71 0.8
JW 0.9 0.9 0.72 0.8
JAC 0.45 0.85 0.88 0.86
BTS 0.85 0.92 0.93 0.92
TFIDF 0.7 0.9 0.85 0.87

P+ED 40 m + 0.55 0.9 0.83 0.86
P+BTS 10 m + 0.6 0.96 0.89 0.92
P+TFIDF 60 m + 0.5 0.94 0.93 0.94

RF — > 0.99 > 0.99 > 0.99

token subsequence edit distance (BTS), and TFIDF scores (TFIDF)
we evaluated the threshold that maximized the classifier’s F1 score.

For example, Figures 9 and 10 shows the effect of the threshold
value on the geographic distance similarity (P) and edit distance
similarity (ED) classifier for the DACH dataset.

For our DACH datasets, the station label similarity classifiers
based on the best token subsequence similarity (BTS) and TFIDF
scores performed best when used in a standalone fashion. BTS was
the clear winner among the standalone similarity measure based
classifiers. This is surprising, as TFIDF scores include an elaborate
preprocessing stepwhich tries to estimate the significance of certain
tokens, and the BTS-based similarity scores operate completely
locally on two station pairs. However, on the BI dataset, there
was only little variance (around 1%) between the standalone string
similarity measures. A manual investigation showed that in Great
Britain and Ireland, stations are much more consistently labeled in
OSM than in the German speaking world. This is demonstrated by
the high F1 score of the ED classifier on the BI dataset (92%). One
explanation for this is that in Germany, Austria and Switzerland,
station objects in OSM often contain all different official labeling
variants, while in Great Birtain and Ireland, there is often only a
single, distinct label recorded.

When combined with a geographic distance based classifier (P),
the F1 scores of ED, BTS and TFIDF generally improved. For both

https://github.com/ad-freiburg/statsimi-eval


FN “Parkweg” @ (52.0149, 7.2051)
“Rosendahl, Osterwick, Parkweg”@ (52.0149, 7.2051)

FP “Bruck an der Mur”@ (47.4136, 15.2793)
“Bruck an der Mur, Waldweg”@ (47.4185, 15.2736)

Figure 11: Typical false negative and false positive for a Jac-
card index based classifier on our DACH dataset.

FN “Bromley-By-Bow Platform 2”@ (51.5248,−0.0115)
“Bromley By Bow Station” @ (51.5234,−0.0121)

FP “Clapton Girls’ Academy”@ (1.5539,−0.0537)
“Clapton”@ (51.5617,−0.0568)

Figure 12: Typical false negative and false positive for a pre-
fix edit distance based classifier on our BI dataset.

FN “Auerbach (Karlsbad), Rosenweg”@ (48.9161, 8.5341)
“Rosenweg”@ (48.9160, 8.5343)

FP “Cottbus, Kiekebusch Alte Schule”@ (51.7215, 14.3646)
“Kiekebusch Friedhof, Cottbus”@ (51.7179, 14.3672)

Figure 13: Typical false negative and false positive for a
TFIDF based classifier. On large datasets, TFIDF scores give
tokens too little significance which are common nation-
ally (like “Schule” (school) and “Friedhof” (cemetery)), but
highly specific locally. Regionally common, but nationally
rare tokens like the village name “Auerbach” near Karlsbad
are given too much significance.

FN “Little Ilford School”@ (51.5483, 0.0577)
“Church Road”@ (51.5479, 0.0569)

FP “Galsworthy Road/Moonshine Lane”@ (53.4178,−1.4808)
“Moonshine Lane - Galsworthy Road”@ (53.4178,−1.4803)

Figure 14: Typical false negative and false positive for our
RF based classifier. FN: “Little Ilford School” and “Church
Road” (in London) have not been grouped correctly in OSM;
our model found a mapping mistake. FP: Different stations
named after intersections of the same streets are often in-
correctly marked as similar, because our RF classifier does
not consider the ordering of trigrams.

our BI and DACH dataset, the best obtainable F1 score for such a
classifier was 0.94 (P+TFIDF).

The evaluation results for our naive baseline techniques (station
label equivalency or station position equivalency) on our DACH
dataset can be read from Figures 9 and 10. The recall for station label
equivalency was 0.67, and 0.22 for position equivalency. Precision
for position equivalency was nearly 1.0, which was to be expected,
as there are basically no cases where different stations share the
same coordinate. As our ground-truth data only considered non-
similar stations up to a distance threshold of 1,000 meters, the
precision of full name equivalency was also nearly 1.0. The F1 score
was 0.79 for label equivalency, and 0.39 for position equivalency.
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top 𝑘 3-grams
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Figure 15: Effect of the number of top-𝑘 trigrams on preci-
sion, recall and F1 score for our random forest (RF) classi-
fier on the DACH dataset. The number of interwoven geo-
graphic grids stayed fixed at 2.

5.2 Random Forest Classifier Results
For our machine learning based approach, we used an off-the-shelf
(from the Python scikit-learn library5) random forest (RF) classifier
with default parameters (the number of trees was left at 100). For
all our testing datasets, we used the top-2500 trigrams and 2 inter-
woven grids 𝐺0 and 𝐺1. We did not use a separate validation set
to optimize these hyperparameters, but used a different randomly
selected training and testing dataset than in the evaluation. The
base grid cell dimensions are chosen in such a way that the earth is
completely covered by a 256 × 256 grid (this means the cell width
and height are around 156 km at the equator; conveniently, a sin-
gle coordinate also fits into an 8 bit integer). We evaluated other
numbers for the top-𝑘 trigrams and other numbers of grids. For the
number 𝑘 of top-𝑘 trigrams, we found that the results quickly con-
verge to the optimal F1 score. For example, for our DACH dataset,
the improvements for 𝑘 > 1000 were marginal (Fig. 15). Regarding
the number of interwoven grids, we were surprised to find that the
quality decreases after 2. This may be explained with regional over-
fitting: a higher number of grids enables the encoding of smaller
geographic areas. Our classifier may then learn that certain location
specifiers have little significance near an individual station, but may
not generalize that this is also true for the greater surrounding area.

The RF classifier clearly outperformed every other classifier. For
both our datasets, precision and recall were at over 0.99.

After intensive manual investigation, we found four prevalent
causes for the remaining false negatives and positives: (1) ambigu-
ous cases where it is disputed whether stations belong to each
other, (2) extreme outliers, e.g. similar identifiers that are more than
500 meters away and/or have highly abbreviated station labels, (3)
different stations named after intersections of the same streets are
incorrectly marked as similar (see FP example in Figure 14), (4)
mapping mistakes in OSM.

5.3 Impact of Spicing and Normalization
To measure the impact of normalization and the robustness of our
techniques against a lack thereof, we re-ran the evaluation for our
DACH dataset with prior normalization, using manually compiled
rules as described in Section 3.3.1. The results are given in Table 5,
right column group.

The maximum F1 score improvement of 2.7% for the similarity
measure based classifiers was below our expectation. For our RF
classifier, the impact of manual normalization was minimal (around

5https://scikit-learn.org/
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Table 5: Effect of spicing and label normalization (withman-
ually created rules) on our DACH dataset. Threshold values
are again optimized for best F1 score. The percentages give
the improvement compared to the best results without nor-
malization and with spicing from Table 4.

without spicing with normalization
method t F1 impr. t F1 impr.

P 125 m 0.95 +69.5% 125 m 0.56 +0%
ED 0.85 0.8 +0% 0.85 0.81 +1.3%
PED 0.85 0.82 +0.2% 0.9 0.83 +1.1%
J 0.85 0.81 +0.1% 0.65 0.88 +1.7%
JW 0.9 0.8 +0.2% 0.95 0.81 +1.4%
JAC 0.45 0.87 +0.4% 0.65 0.88 +1.7%
BTS 0.85 0.93 +0.2% 0.95 0.93 +0.8%
TFIDF 0.65 0.87 -0.2% 0.7 0.87 -0.2%

P+ED 50 m + 0.1 0.97 +12.1% 30 m + 0.55 0.87 +0.7%
P+BTS 30 m + 0.1 0.96 +4% 10 m + 0.99 0.95 +2.7%
P+TFIDF 50 m + 0.05 0.96 +2.5% 60 m + 0.55 0.94 +0.3%

RF — >0.99 +0.5% — >0.99 +0.1%

0.1%). This indicates that the classifier learned these normalization
rules during the training phase. The TFIDF based classifiers also
showed little to no improvement. Tokens typically used in our nor-
malization rules may already have a very high document frequency,
limiting the impact of their normalization.

We note that our JAC, BTS and TFIDF classifiers already perform
implicit normalization. As these classifiers operate on word tokens,
we have to choose some way of tokenization. We are using a simple
split by non-word characters, which effectively means that labels
like “St. Pancras” are normalized to “St Pancras”.

Table 5 also gives the impact of the spiced station pairs we add
to the ground truth (see Section 4.1 for details.) The performance of
classifiers based on geographic distance greatly improved if spicing
was disabled. This was to be expected, as the unspiced ground truth
data from OSM is based on a curated dataset with few coordinate
precision problems.

6 CONCLUSIONS
We investigated how to automatically decide whether two station
identifiers (each consisting of a label and a coordinate) belong to the
same real-world station. We discussed several approaches to this
problem. Our evaluation on extensive ground truth data obtained
from OpenStreetMap (OSM) data showed that typical datasets have
a large percentage (90–95%) of “easy” cases where simple techniques
based on edit or geographic distance may already perform well. For
practical use, however, they are not good enough, especially when
a robustness against coordinate imprecisions is required (which is
typically the case). As expected, more elaborate similarity measures
for station labels improved the overall classification performance.
However, on our biggest dataset (DACH), the best classifier based
on a similarity measure still only achieved an F1 score of 94%. In
contrast, our learning-based approach achieved F1 scores above
99% across all datasets and even found errors in the original OSM
data.

It might be of interest to further evaluate the robustness of our
approach against spelling errors. We would also like to better evalu-
ate the extent to which our learning-based classifier is able to learn
locally irrelevant location specifiers, for example by constructing
a ground-truth dataset in which these specifiers can easily be sep-
arated from the station labels. Such a dataset may be constructed
from the administrative boundaries contained in the OSM data.
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